2(3x^2+3x)=2(4x+3)

Simple and best practice solution for 2(3x^2+3x)=2(4x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x^2+3x)=2(4x+3) equation:



2(3x^2+3x)=2(4x+3)
We move all terms to the left:
2(3x^2+3x)-(2(4x+3))=0
We multiply parentheses
6x^2+6x-(2(4x+3))=0
We calculate terms in parentheses: -(2(4x+3)), so:
2(4x+3)
We multiply parentheses
8x+6
Back to the equation:
-(8x+6)
We get rid of parentheses
6x^2+6x-8x-6=0
We add all the numbers together, and all the variables
6x^2-2x-6=0
a = 6; b = -2; c = -6;
Δ = b2-4ac
Δ = -22-4·6·(-6)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{37}}{2*6}=\frac{2-2\sqrt{37}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{37}}{2*6}=\frac{2+2\sqrt{37}}{12} $

See similar equations:

| 10—2/x=—2 | | 3x+20=320 | | 2(-1-7x)=-72 | | 0=-2x-3x-5 | | 5y/6=2y-4 | | 9=c-6 | | 17x=-179 | | m=(-2,6)N(8,0) | | 45x^2+26-8=5x+4 | | 11-3x=90 | | (2(x+1))/4=4x-3 | | 22.5r+30=-22.5+7.5r | | 2t+5+5t-6t=5+5 | | 6n=4•12 | | 13=k/2 | | 11-3x+90=139 | | 11.3x+90=139 | | F=-2x-3x-5 | | (7x4−9x3−4x2+5x+6)−(2x4+3x3−x2+x−4)=0 | | (1/x)+(1/3x)=17/4 | | 2(4x1)-3=8x+-1 | | 6(f+5)=(f-3) | | 8(8p+¼)/8p=8p+2 | | 86-(4x+4)=4(x+7)+x | | 20x^2=980 | | 12-x=15+2 | | y=2(10)+35 | | 3(-5x+9)=-18 | | 39.09=8g+3.73 | | y=2(0)+35 | | 8q^2+4q-420=0 | | 7t+1/3=t+5/6+t-3/6 |

Equations solver categories